题目: ROUTING IN CYCLES VIA MATCHING
报告人: 喻革新 威廉玛丽学院
时间地点:6月6日下午4:00-5:00,教室:5104
摘要: Routing permutations on graphs via matching is an important problem proposed by Alon, Chung, and Graham [SIAM J. Discrete Math., 7 (3) (1994), pp. 513--530], which has many applications in various different fields. Let $G$ be a graph whose vertices are labeled $1,\ldots,n$, and $\pi$ be a permutation on $[n] := \{1,2,\ldots,n\}$. A pebble $p_i$ that is initially placed at the vertex $i$ has destination $\pi(i)$ for each $i \in [n]$. At each step, we choose a matching and swap the two pebbles on each of the edges. The routing number $rt(G,\pi)$ for $\pi$ is the minimum number of steps necessary for the pebbles to reach their destinations. Li, Lu, and Yang [SIAM J. Discrete Math., 24 (4) (2010), pp. 1482-1494] proved that $rt(C_n,\pi)\leq n-1$ for every permutation $\pi$ on the $n$-cycle $C_n$ and conjectured that $rt(C_n,\pi)= n-1$ only if $\pi=(123\cdots n)$ or its inverse for $n\ge 5$. He, Valentin, Yin, and Yu proved the conjecture for all even $n \geq 6$. In this paper, we confirm the entire conjecture. This is joint work with Xiangjun Li and Xia Zhang.
报告人简介:喻革新,美国威廉玛丽学院(College of William and Mary)教授。2006年毕业于伊利诺伊大学香槟分校(UIUC)获博士学位。2006-2008年在范得堡大学(Vanderbilt)做博士后研究。主要研究方向为图论,组合及其应用。主持完成多项美国NSF项目和NSA基金,并主持组织国际学术会议十余次,多次在国际学术会议做邀请报告。在图染色,图链接,图嵌入等方向发表SCI收录学术论文80余篇,其中在图论组合顶级期刊发表论文多篇,如J. Combin. Theory, Ser. B,Combinatorica,SIAM J. on Discrete Mathematics等。