2023 年 11月 11 日,为推进应用数学与相关交叉学科及多领域产业的融合发展,促进应用数学的教育与研究、普及与推广,0029cc金沙贵宾会图形计算与感知交互安徽省重点实验室(GCL)的陈仁杰教授和傅孝明副教授代表“数学与应用科普教育基地”及“应用数学教工党支部”,在黄山学院给100多位本科生作科普报告。陈仁杰老师的报告题目是《计算镜杯艺术设计》,傅孝明老师的报告题目是《面向共形参数化的稀疏锥奇异点生成》。
首先,应用数学教工党支部书记、GCL实验室主任刘利刚老师致开场词,表达了希望借此活动可以促进数学知识的普及和深化理解,增强实践能力和创新精神,培养科学态度和科学精神,拓宽视野并增强社会责任感。
陈仁杰老师首先通过视频介绍了镜杯艺术,这是由一个镜杯和一个带纹理的碟子组成。在特定视点观察时,观察者能够从镜面和碟子上看到两幅完全不同的图案。接下来,陈仁杰老师介绍了一种用于解决反射杯碟艺术品生成问题的计算框架,该框架主要利用了可微渲染技术来获取从图像到物体参数的梯度,并使用一个减少冲突的策略,来实现在低视觉误差和低扭曲变形之间的平衡。这一框架减少了用户在设计时所需花费的时间,并提供了巨大的设计灵活性。最后,陈仁杰老师通过3D打印的实物证明了算法的可行性。
傅孝明老师首先阐述了数字几何处理的基本知识,数字几何处理广泛用于计算机图形学、计算机视觉、物理模拟等领域,是一种使用数学和计算机科学对离散网格进行操作的技术,这包括对几何形状的表示、重建、简化、重新网格化、变形、参数化等。今天的报告的重点是网格参数化,其是将三维物体或形状的顶点通过映射函数投影到一个二维平面上,以便进行进一步处理和分析。接下来,傅孝明老师介绍了共形参数化,并通过应用(地图绘制、网格变形等)强调了共形参数化的作用。但是共形参数化通常会有很大的面积扭曲,于是需要引入锥奇异点来减少扭曲,这种锥奇异点技术已经被应用在4D打印,网格生成、曲面对应。最后,傅孝明老师介绍了面向共形参数化的稀疏锥奇异点生成算法。第一个是基于L0稀疏优化的算法,通过使用DR分解算法优化reweighted L1去逼近优化L0范数的效果,第二个算法同坐交替移动点和添加点使得扭曲小于给定界。
此次科普活动不仅增加了学生们对智能图形技术的了解,也使他们更深入地认识到数学在其中的重要作用,激发了他们对数学的兴趣,也使得“生活中处处有数学”的观点得到了更多人的认同。