01-03【瞿 铮】管楼1418 国家数学与交叉科学中心合肥分中心报告会

发布者:万宏艳发布时间:2020-01-02浏览次数:681

报告题目: An inexact proximal augmented Lagrangian framework with arbitrary linearly convergent inner solver for composite convex optimization   

报告人:瞿铮  香港大学

报告时间:1月3日 8:30-9:30

报告地点:1418

摘要:

We propose an inexact proximal augmented Lagrangian framework with explicit inner problem termination rule for composite convex optimization problems. We consider arbitrary linearly convergent inner solver including in particular stochastic algorithms, making the resulting framework more scalable facing the ever-increasing problem dimension. Each subproblem is solved inexactly with an explicit and self-adaptive stopping criterion, without requiring to set an a priori target accuracy. When the primal and dual domain are bounded, our method achieves the best known complexity bounds in terms of number of inner solver iterations, respectively for the strongly convex and non-strongly convex case. Without the boundedness assumption, only logarithm terms need to be added. Within the general framework that we propose, we also obtain the first iteration complexity bounds under relative smoothness assumption on the differentiable component of the objective function. We show through theoretical analysis as well as numerical experiments the computational speedup achieved by the use of randomized inner solvers for large-scale problems.