Title:Minkowski type inequalities in space form: results and open problems
Speaker:管鹏飞 教授 (麦吉尔大学)
Time:2019年10月18日 下午 16:00-17:00
Room:东区管理科研楼 0029cc金沙贵宾会1418室
Abstract:The Minkowski inequality states that, for a convex body $/Omega/subset /mathbb R^{n+1}$, $/int_{/partial /Omega}H d/sigma /ge C_n (/int_{/partial /Omega} d/sigma)^{/frac{n-1}{n}}$ for some dimensional constant $C_n>0$, the equality holds if and only if $/Omega$ is a round ball. This inequality has been extended for starshaped domains (Guan-Li) and for area outer minimizing domains (Huisken). In this talk, the focus is this type of inequality in space form: hyperbolic space $/mathbb H^{n+1}$ and elliptic space $/mathbb S^{n+1}$. We will discuss some recent results and challenging open problems.
欢迎感兴趣的师生参加!