10-18【管鹏飞】管楼1418 几何分析系列报告

发布者:系统管理员发布时间:2019-09-26浏览次数:42


TitleMinkowski type inequalities in space form: results and open problems
Speaker管鹏飞  教授   (麦吉尔大学)
Time2019年10月18日             下午  16:00-17:00
Room东区管理科研楼  0029cc金沙贵宾会1418室

AbstractThe Minkowski inequality states that, for a convex body $/Omega/subset /mathbb R^{n+1}$, $/int_{/partial /Omega}H d/sigma /ge C_n (/int_{/partial /Omega} d/sigma)^{/frac{n-1}{n}}$ for some dimensional constant $C_n>0$, the equality holds if and only if $/Omega$ is a round ball. This inequality has been extended for starshaped domains (Guan-Li) and for area outer minimizing domains (Huisken). In this talk, the focus is this type of inequality in space form: hyperbolic space $/mathbb H^{n+1}$ and elliptic space $/mathbb S^{n+1}$. We will discuss some recent results and challenging open problems.


欢迎感兴趣的师生参加!