时间:12月24日(周一)晚 19:00 - 23:00,每个 seminar 1小时
地点:五教 5405
(1)报告人:吴冶默
题目:有限反射群的轨道空间上的Frobenius流形结构
摘要:我们以有限反射群的不变函数作为轨道空间上的坐标,利用不变函数的性质引入几何结构,以此得到轨道空间上的Frobenius流形结构。
(2)报告人:付昂
题目:GUE partition function and tau-function of Toda hierarchy
摘要:The main purpose of the report is prove the GUE partition function is the tau-function of a particular solution of Toda hierarchy. Firstly, I will use orthogonal polynomials to compute GUE partition function. Secondly, I will start with the trinomial relation of orthogonal polynomials to prove that the GUE partition function is the tau-function of a particular solution of Toda hierarchy.
(3)报告人:葛岩岩
题目:A new class of Euler equation on the dual of the N = 1 extended Neveu-Schwarz algebra
摘要:We will study a super-Euler system and we will show that the super-Euler system is local bi-superbihamiltonian and supersymmetric under some conditions.By choosing different parameters, we could obtain several supersymmetric or bisuperhamiltonian generalizations of some well-known integrable systems including the 2-component KdV equation, the 2-component Camassa-Holm equation, the 2-component HunterSaxton equation, and, especially,the Whitham-Broer-Kaup dispersive water-wave system.
(4)报告人:马士林
题目:无穷维哈密顿系统及其分类
摘要:本次报告首先简要介绍局部圈空间上的光滑函数,向量场及泊松括号,从而引出无穷维哈密顿系统,并说明其与PDE系统的联系。之后介绍半单双哈密顿结构及其分类问题,其中包括正则坐标,泊松上同调,拟平凡约化定理,中心不变量等内容。
欢迎广大师生参加!