报告题目:On the dynamics of quasi-periodically perturbed homoclinic solutions
报 告 人: Prof. Kening Lu
Brigham Young University, USA
报告时间:2013年8月5日 星期一
下午 15:30-16:30
报告地点:管理科研楼室1518教室
摘要: We study the complicated dynamics of quasi-periodically perturbed ordinary differential equations with a homoclinic orbit to a dissipative saddle point. We show that there are four regions of parameters in which the equations have respectively: (1) attracting quasi-periodic integral manifolds of Levinson type; (2) transition to chaos; (3) strange attractors; (4) homoclinic tangles. In the case of homoclinic tangles, we not only obtain the results on horseshoes similar to the existing ones, but also give a comprehensive geometric description of the structures of tangles. This is a joint work with Wen Huang and Qiudong Wang.
主办单位: 0029cc金沙贵宾会
中科院吴文俊数学重点实验室